Los Angeles Inventory of Nonductile Concrete Buildings for Analysis of Seismic Collapse Risk

PEER Annual Meeting October 16, 2009

T. Anagnos, M. C. Comerio, C. Goulet, H. Na , J. Steele, J. P. Stewart

Pilot Study

- Regional seismic hazard
- Loss estimate
- Simulation of mitigation

Laboratory and Field Tests

- Older-type columns
- Retrofitted columns
- Beam column connections
- Simplified wall-frame system

NEES Grand Challenge Mitigation of Collapse Risk in Older Concrete Buildings

Modeling & Simulation

Improved engineering modelsImproved simulation models

Mitigation Strategy Development

- Develop public policy alternatives
- Test concepts through focus
- groups and pilot studies

City of Los Angeles Pilot Study

- Identify concrete buildings in city
- Evaluate characteristics of inventory (age, height, size, location, use, structural type)
- Develop rules to classify buildings into risk categories, for example:
 - pre-1976, concrete frame, high-rise, residential \rightarrow high risk
 - pre-1976, one story, shear wall, commercial \rightarrow low risk
 - post-1976 \rightarrow low risk
- Estimate collapse risk
- Simulate improved inventory and evaluate impact on estimated risk

Inventory Data Challenges

- Each building is unique but must classify into distinct number of well defined groups
- Impossible to do building-by-building review for a large city
- No single place to locate inventory data
- Available data sources developed for other purposes
- Data sources can be unreliable (e.g. assessor)
- Data sources have different classification systems
- Not all data sources are public

Data & Sources

- Assessors files (limited to privately owned and selected city owned properties)
- Publicly available databases (ZIMAS, LUPAMS, Adaptive Reuse projects)
- AB 300 database of schools (CA Seismic Safety Commission)
- State-owned buildings (Dept. of General Services)
- Public universities (CSU Chancellor & UC Office of Pres.)
- Hospitals (OSHPD)
- Harbor facilities (Port of LA)
- Building plans (LA Building & Safety, visits to engineers)
- Visual Data Confirmation (Sidewalk surveys, Google Streetview, Live Search, Sanborn maps)

Attributes of Database

- Compiled in Google Earth Pro
 - Geocoding, overlay capabilities, calculation tools
 - Store associated photos, drawings, documents
 - Retrieve data as data file or by viewing individual points
 - Portable to other database software
- Data fields compatible with HAZUS (e.g. # stories, year built, sq ft, structure type etc.)

Mapping Data - Shows Clustering

Individual Point from Google Earth Database

First_Floor_Building_Use = Commercial Second_Floor_and_Above_Building_Use = Office Space Year_Built = 1966 Approximate_Length_and_Width__ftxft_ = unknown Number_of_Stories__without_Penthouse_or_Mezzanine_ = 10 Additional_Levels = 1 penthouse Number_of_Basements = 3 (parking) Tall_First_Floor = no Signs_of_Retrofit = no Building_Narrows_as_it_Gets_Taller = no Building_Includes_Address_Range = no Building_Type = Shear wall around elevator? Gravity columns above pedestal. Additional_Observations = Vertical discontinuity. 10 columns on 1st floor, 29 above. Saw shear wall around elevator and stairs.

Sample Data Entry

Inventory Characteristics

Inventory Characteristics

Building Height 500 400 Number of Buildings 300 200 100 0 2 to 3 4 to 7 8+ 1 unknown **Number of Stories Building Height** 40 30 Sq. Ft. (millions) 20 10 0 1 2 to 3 4 to 7 8+ **Number of Stories**

Inventory Characteristics

Occupancy Categories

Database Validation

Select several areas of city
A – high concentration in database
B – low concentration in database
Perform detailed sidewalk survey of these areas

Observations

- Concrete bldgs clustered in certain parts of city (likely due to zoning and development era)
- Close to 400 1-story bldgs these may be buildings we can classify as lower risk
- ~350 buildings in the 1960s and early 1970s, many are high rise →deserve a closer look
- State-owned bldgs & universities → aggressive programs for retrofit – few additional data points
- Schools and hospitals are incomplete may add another 100 buildings
- More than 6.1 million sq ft of identified retrofit

Conclusions

- Database will be incomplete
 - hospitals, schools, airports, utilities, non-profits, and other public buildings
- Los Angeles data not universally representative
 - Each city has unique development and redevelopment patterns
- Understanding the inventory guides engineering approaches
 - knowing prevalent structural types can focus on specific collapse mechanisms
- Understanding inventory guides policy approach
 - number and types of building uses and occupancies influence how cities plan for mitigation